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ABSTRACT:   

 

Given a set of mixed spectral vectors, spectral mixture analysis (or spectral unmixing) aims at 

estimating the number of reference materials, also called endmembers, their spectral signatures, and 

their fractional abundances. A semi-supervised approach to deal with the linear spectral unmixing 

problem consists in assuming that the observed spectral vectors are linear combinations of a small 

number of spectral signatures known in advance. Unmixing then amounts to find a small number of 

materials in the spectral library that best represent the observed data. Finding a small number of 

signatures in a large library is a combinatorial problem which calls for efficient sparse regression 

techniques. In this study, we compare four unmixing algorithms with the ultimate goal of analyzing 

their potential in solving sparse hyperspectral unmixing problems. The algorithms compared are:  

1) Moore-Penrose pseudoinverse;  

2) Orthogonal Matching Pursuit algorithm (Y.  Pati, et al.  ,1993);  

3) ISMA – Iterative Spectral Mixture Analysis (D. Rogge, et al., 2006); 

4) TwIST (Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration) 

algorithm (J. Bioucas-Dias and M.  Figueiredo, 2007). 

After conducting a quantitative and comparative analysis of the above-mentioned algorithms, we 

conclude that the 12 ll −  sparse regression techniques and the respective algorithms, of which 

TwIST is an example, yield state-of-the-art performance in hyperspectral sparse unmixing; this 

conclusion is in line with the success that these optimization methods have achieved in the area of 

compressed sensing.  
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1. INTRODUCTION 

The spectral images usually contain mixed 

pixels, as numerous disparate substances 

(called endmembers) can contribute to the 

measured spectra of a single pixel. The 

characteristics of a mixed pixel are determined 

by the low spatial resolution of the spectral 

sensor flying at high altitudes and by the 

combination of different materials in a 

(homogeneous) mixture inside the pixel 

(Keshava, 2003). 

The mixing models used to solve the 

unmixing problem are either linear (LMM -

linear mixing model) or non-linear. The non-

linear models are far more complex, often 

depending on scene parameters difficult to 

obtain. For these reasons, the non-linear 

models are not of widespread use in 

hyperspectral applications.  

In this paper, we adopt the LMM, which, 

despite its simplicity, models with reasonable 

approximation many real situations.  
 



 

2. THE LINEAR MIXING MODEL 

The LMM assumes that the spectral response 

of a pixel is a linear combination of the end-

members signatures present in that pixel, i.e., 
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where ir  is the reflectance of the pixel 

measured by the satellite sensor at band i, jim ,  

is the reflectance of the j
th

 endmember at band 

i, jα  is the fractional abundance of the j
th 

endmember, in  is the error term for spectral 

band i (e.g., the noise affecting the measuring 

process), and q is the total number of endmem-

bers present in the pixel. If we consider that 

the hyperspectral sensor used in data 

acquisition has L spectral bands, the system (1) 

can be written in matrix form as follows: 

                         nMR +⋅= α ,                  (2) 

where R is an L-by-1 column vector (the 

measured spectrum of the pixel), M is an L-by-

q matrix called the mixing matrix (the spectral 

signatures of the endmembers), α  is a q-by-1 

column-vector (the respective fractional abun-

dances of the endmembers) and n is an L-by-1 

column-vector collecting the errors affecting 

the measurements. The fractional abundances 

of the constituent endmembers are subject to 

two constraints: i) the non-negativity 

constraint: the fractional abundances can not 

be negative; ii) the sum-to-one constraint: the 

fractional abundances of the endmembers 

should sum to one. 

In a semi-supervised approach, the unmixing 

problem is solved by searching for the 

endmembers in a given large database – a 

spectral library which will be denoted by the 

L-by-p matrix S, where p is the number of 

spectral signatures contained in S and  p>>q; 

we assume that L>>p. The system (2) can be 

written: 

                         nfSR +⋅=                      (3) 

As the number of endmembers contained in a 

pixel is usually small, the vector of fractional 

abundances f is sparse and the unmixing 

process requires solving a combinatorial 

problem, which demands to significant time 

and computational efforts. These obstacles 

call for efficient sparse regression techniques. 
 

 

3. THE ALGORITHMS 

This section describes the four algorithms 

tested in this paper. 

 

3.1 Moore-Penrose Pseudoinverse 

Given system (3), the first simple idea coming 

into mind, in order to find an estimate f̂  of 

f , is to multiply the inverse of S  by the 

observation vector R  ( RSf 1ˆ −= ). However, 

this is not possible, as the matrix S  is not 

square, thus it is not invertible and we have to 

deal with an ill-posed problem. Based on the 

fact that L>>p and considering that the 

columns of S (the spectra) are linearly inde-

pendent, the product SS
T  is square with full-

rank (so, invertible) and it can be shown that 

the estimate f̂  can be obtained as follows: 

              ( ) RSRSSSf TT ⋅=⋅⋅⋅=
− #1

ˆ     (4) 

where ( ) TT SSSS ⋅⋅=
−1#  is called the 

Moore-Penrose pseudoinverse of the matrix 

S . This is the unconstrained solution of 

system (3) in the least-squares sense: 
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If the observation is not affected by noise, this 

solution is the exact one. When the 

observation is affected by noise, the estimate 

includes an error term. This error term 

depends on the condition number of the 

matrix SS
T , becoming more important when 

S is bad-conditioned. The details about how 

this inexact solution leads to a new approach 

are shown in section 3.4. However, as it is an 

unconstrained solution, it is plausible that it 

will not satisfy the non-negativity and the 

sum-to-one constraints. 

 

3.2 Orthogonal Matching Pursuit (OMP)  

OMP (Pati et al., 1993) is an iterative 

technique derived from Matching Pursuit 



 

(Mallat & Zhang, 1993). It searches for the 

spectral signature contained in the spectral 

library which best represents a predetermined 

residual. The algorithm starts with three 

initializations: i) the initial residual is equal to 

the observed spectrum of the pixel: 

RRES ← ; ii) the vector of fractional 

abundances is null: 0ˆ ←f ; iii) the matrix of 

the indices of selected endmembers is empty: 

Φ=Λ . 

Further, at each step, the algorithm finds the 

member of the library which is best correlated 

to the actual residual, adds this member to the 

endmember matrix and memorizes in f̂  the 

coefficients of the selected members. The 

residual is then updated and the entire process 

repeats until a stop criterion is satisfied. At any 

iteration, the residual is orthogonalised to the 

members which are already selected, so the 

next selected member is always a new one (a 

member can not be selected more than once). 

 

3.3 Iterative Spectral Mixture Analysis 

(ISMA)  

ISMA (Rogge et al., 2006) was introduced as 

an alternative to Spectral Mixing Analysis 

(Adams et al., 1993). As its name suggests, it 

is an iterative algorithm, which exploits the 

change in the root-mean-squared (RMS) error 

as a function of the selected endmembers. It is 

plausible that, when the set of selected 

endmembers approaches the actual one, the 

predicted fractional abundances are similar to 

the actual ones and they should sum to one. 

This is why ISMA computes, at each iteration, 

an unconstrained solution instead of a 

constrained one.  

ISMA removes iteratively the members from 

the spectral library, until one member remains, 

and then finds the optimal endmember set by 

analyzing the change in the RMS as a function 

of the number of endmembers.  

The member that is removed, at each iteration, 

is the one with the minimum fractional 

abundance. The process repeats with the 

remaining members.  

The second part of ISMA consists in deter-

mining the critical iteration, which represents 

the “limit” between “too many” and “too few” 

endmembers and corresponds to the optimal 

endmember set. The critical iteration is found 

by examining the change in the RMS error, 

which, for the thj  iteration, is:  

               ( )jj RMSRMSRMS /1 1−−=∆  .  (6) 

At some iteration, the endmember set found 

by ISMA is the optimal one and it is related to 

a certain RMS error (not very different from 

the previous ones). When an endmember from 

the optimal set is removed, the error increases 

dramatically, as the remaining endmembers 

are not enough to model with good accuracy 

the observed spectra; the critical iteration is, 

then, detected, when the changing in RMS is 

above a preset threshold. The set of 

endmembers remaining in the spectral library 

at the critical iteration is the actual mixing 

matrix. 

 

3.4 Two-Step Iterative Shrinkage/Thre-

sholding (TwIST) algorithm (Bioucas-Dias 

& Figueiredo, 2007) 

TwIST is an iterative technique representing 

an improved version of IST (Iterative Shrin-

kage/Thresholding) class algorithms, which 

solve an unconstrained optimization problem 

arising from combining a linear observation 

model with a nonquadratic regularizer. The 

IST algorithms have a convergence rate which 

depends strongly on the linear observation 

operator. If this operator is ill-conditioned or 

ill-posed, the convergence speed of this class 

of algorithms is very slow. On the other hand, 

a different algorithm, proposed by Bioucas-

Dias, under the generalized expectation-

maximization framework, proved to be much 

faster than IST when the linear operator is 

strongly ill-conditioned. This algorithm is 

known as IRS (Iterative Re-Weighted 

Shrinkage) algorithm (Bioucas-Dias, 2003). 

As we mentioned in the Section 3.1, the 

solution obtained by using the Moore-Penrose 

pseudoinverse, for a noisy observation, is 

affected by an error term: 



 

                    nSfRSf ⋅+=⇒ ## ˆˆ              (7) 

The error term nS
#  is strongly influenced by 

the condition number of the matrix S. In terms 

of the SVD decomposition, the matrix S can be 

written as H
SVUS Σ= and its Moore-Penrose 

pseudoinverse as H
S UVS

1# −Σ= . 

This expression shows that the small eigen-

values in its SVD decomposition lead to a 

large error term in f̂  (due to the amplification 

of noise) and also to loss of sparsity. This 

means that the ill-conditioned nature of S has a 

strong influence on the accuracy of the results.  

In order to limit the influence of small 

eigenvalues, we can search for a sparser 

solution by introducing a sparsity enforcing 

term in the objective function (5). A possible 

solution is
0

f , the so-called 0l  norm, which 

gives the number of non-zero elements of  f . 

The new optimization problem is then 

            
0

2
minargˆ ffSRf

f
λ+⋅−=  ,   (8) 

where 0>λ  is a regularization parameter con-

trolling the relative weight between the data 

misfit term 
2

fSR ⋅−  and the regularizer. 

The optimization (8) is a non-convex combina-

torial problem, which is very difficult to solve. 

It is, however, known (Bruckstein et al., 2009) 

that, for matrices S with certain properties of 

incoherence and sparse vectors f, the 0l  norm 

can be replaced by the 1l  norm. This is of great 

relevance because the new optimization pro-

blem is convex and thus manageable.  Based 

on this result, we use TwIST to minimize 

efficiently the 12 ll −  objective function 
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 is the 1l  norm of f . 

 
 

4. TEST DATA 

As the results are strongly influenced by the 

condition number of the spectral library, this 

study considered three simulated spectral 

libraries, iS , i=1,2,3, with corresponding 

condition numbers 84.101 =C  (“well-

conditioned”), 7.912 =C  (“medium-

conditioned” or “not too bad conditioned”) 
3

3 1047.2 ⋅=C  (“ill-conditioned”). Each of 

these spectral libraries contains p = 20 

materials. The number of spectral bands is L 

= 220. The mixtures contain 4, 5 or 6 

endmembers. The observations are affected by 

zero-mean Gaussian noise and signal-to-noise 

ratios (
22

/ nfSSNR ⋅≡ ) of 20, 40, 60 and 

80 dB. The algorithms were tested for all the 

possible combinations of these simulation 

conditions. 
 

 

5. RESULTS 
 

The tests showed that all the algorithms have 

good results in good conditions (well-

conditioned mixing matrix and high SNR).  

When the mixing matrix is bad- or medium-

conditioned, the Moore-Penrose Pseudoin-

verse, being an unconstrained method, returns 

accurate solutions only if the SNR is high 

(60dB or 80dB); otherwise, the results are 

physically unrealistic (the fractional 

abundances do not satisfy the non-negative 

constraint and the sum-to-one constraint).  

OMP returns, usually, better results than the 

Moore-Penrose Pseudoinverse. The results are 

accurate when the mixing matrix is well- or 

medium-conditioned and the noise level is 

low. In the case of medium-conditioned S, the 

OMP algorithm yields good results, even for 

dBSNR 40= , but, in hard conditions (bad-

conditioned matrix and low SNR), it fails in 

inferring accurate solutions. In our tests, the 

stop criteria used was “the residual is below 

an imposed threshold”. The method doesn’t 

converge if this threshold is too low, as the 

residual never attends it. If the imposed 

residual is too high, the method under-

estimates the size of the set of endmembers. 

The results obtained by ISMA are accurate 

most of the time. Although, the method has 

problems in finding the endmembers set when 



 

the mixing matrix is medium- or bad-

conditioned and the noise has a high level.  

As it was described, ISMA finds the set of 

endmembers by examining the change in the 

RMS error along the iterations. The problems 

encountered by ISMA in hard conditions 

appear because of the high sensitivity of the 

method at the imposed threshold t.  

Fig. 1 shows the evolution of the RMS error 

along the iterations for 2SS = , 5=q , 

SNR= db60  (Fig. 1.a) or SNR= dB20  (Fig. 

1.b).  
 

 

  

a) b) 

Fig. 1 ISMA – The evolution of the RMS 

error for: a) dBSNR 60= ; b) dBSNR 20=  
 

From fig. 1, it is obvious that the stop criteria 

is very flexible in good conditions, but it is 

more difficult to fine tune in bad conditions.  

Fig. 2 shows the results obtained by ISMA for 

different imposed thresholds. The 

configuration of the simulated system is the 

same as the one in Fig. 1.b). 
 

  
a) 33 −= et  b) 34 −= et  

 
c) 35 −= et  

 

Fig. 2 ISMA - the reconstructed fractional 

abundances for different thresholds t. 
 

In Fig. 2.a), the imposed threshold t is too 

small and the iterative process finds the “criti-

cal iteration” – the “boundary” between “too 

many” and “too few” endmembers – after 

only two steps. The algorithm returns an 

inaccurate solution. This solution contains 

both positive and negative abundance 

fractions, as the solution computed by ISMA 

at each step is an unconstrained one. For Fig. 

2.b), the threshold is the optimal one and the 

inaccuracies of the solution are due to the 

high level of the noise. In Fig. 2.c), the 

imposed threshold is too high and the 

algorithm finds the critical iteration later than 

it should. Not all the endmembers are found 

and the endmember set becomes incomplete, 

because each additional iteration means the 

removal of one endmember. The major 

disadvantage of ISMA is that, in order to 

obtain an accurate solution, the imposed 

threshold has a very small range of values in 

which can be considered optimal. In harder 

conditions, it is even more difficult to find the 

optimal threshold. 

 TwIST proves to be more powerful than any 

of the previous methods, having the 

advantage of finding more accurate results 

even in bad conditions (bad-conditioned 

mixing matrix and high noise).  Fig. 3 shows 

the results obtained by TwIST in bad 

conditions ( 3SS = , dBSNR 20=  in Fig. 3.a 

and 3.b and dBSNR 40=  in Fig. 3.c) and 

different dimensions of the actual set of 

endmembers (4, 5 and 6 endmembers, 

respectively). 
 

  
a) 4=q  b) 5=q  

 
c) 6=q  

 

Fig. 3 TwIST – Results in bad conditions 



 

From Fig. 3, it can be seen that TwIST finds 

all the endmembers present in the mixture. The 

results have good accuracy even in bad 

conditions. 
 

 

6. CONCLUSIONS 
 

   The paper conducted a study over the 

performances of different spectral unmixing 

algorithms. The tests showed that TwIST is the 

most efficient algorithm, having high 

performances in any conditions. TwIST 

combines in an efficient way the advantages of 

IST and IRS class algorithms. ISMA is 

efficient when the mixing matrix is not bad-

conditioned and the noise affecting the 

observations is not very high. The Moore-

Penrose Pseudoinverse is a method strongly 

influenced by the noise and, because of its 

unconstrained character, returns unrealistic 

fractional abundances (which do not satisfy the 

non-negative and sum-to-one constraints) 

when the observations are noisy or the mixing 

matrix is not well-conditioned. OMP has better 

performances than the Moore-Penrose 

Pseudoinverse, but fails in returning accurate 

results in medium or bad conditions. 
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